
Light scattering properties of spheroidal particles

Shoji Asano

Light scattering characteristics of spheroidal particles are studied for a wide range of particle parameters
and orientations. The method of computation is based on the scattering theory for a homogeneous spheroid
developed by us, and the calculation is extended to fairly large spheroidal particles of a size parameter up
to 30. Effects of the particle size, shape, index of refraction, and orientation on the scattering efficiency fac-
tors and the scattering intensity functions are investigated and interpreted physically. The scattering prop-
erties of prolate and oblate spheroids with incidence parallel to the rotation axis constitute the extremes.
The prolate spheroids at parallel incidence have steep and high resonance maxima in the scattering efficien-
cy factors and broad and low forwardscattering peaks in the intensity functions; on the other hand, the ob-
late spheroids at parallel incidence have broad and low resonance maxima and sharp and high forwardscat-
tering peaks. With an increase of the incidence angle, the scattering behavior of prolate spheroids ap-
proaches that of oblate spheroids at parallel incidence and vice versa. It is shown that, for oblique incidence,
the scattering properties of a long slender prolate spheroid resemble those of an infinitely long circular cylin-
der. Effects of absorption on the extinction efficiency factors and scattering intensity functions are exam-
ined. Some problems in numerical calculation of the spheroidal wave functions and the infinite series solu-
tions are discussed.

1. Introduction

Currently there is great progress being made in the
theoretical study of light scattering by nonspherical
particles of finite size. One of the powerful techniques
for analyzing the scattering of electromagnetic waves
by nonspherical particles is the integral equation for-
mulation of the scattering problem. Several ways of
solving the integral equations have been proposed, and
the method has been widely applied to the axisymmetric
bodies such as spheroids,'- circular disks,7 finite rods,1 8

and infinite cylinders6 9"10 with various cross-sectional
shapes. The method gives exact solutions; however, it
requires substantial numerical integrations over the
surface or volume of the scattering body.

Another method for analyzing the scattering by
spheroids has been developed by Asano and Yamamo-
to." This method is the separation of variables for the
vector wave equations in the spheroidal coordinate
system. This gives the exact quasi-analytic solution for
light scattering by homogeneous isotropic spheroids.
The computations are straightforward. The electro-
magnetic field vectors are expanded in terms of the
spheroidal vector wave functions. The unknown
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coefficients of expansion are determined by a system of
linear equations derived from the boundary conditions.
The solutions for the prolate and oblate spheroidal
systems are in the same form.

In the previous paper," we examined the light scat-
tering properties of relatively small spheroids with the
real index of refraction mi = 1.33. In this paper, we shall
discuss scattering characteristics such as the efficiency
factors for scattering and absorption, the forwardscat-
tering and backscattering, and the angular distributions
of scattered intensity for various sizes, eccentricities,
complex refractive indexes, and orientations of the
spheroids. Computations are extended to fairly large
particle sizes. The method of calculation and the
notation are the same as those in Ref. 11.

11. Scattering Geometry
The light scattering by a spheroidal particle is spec-

ified by the following five physical quantities: (1)
particle size relative to the wavelength of incident wave;
(2) eccentricity; (3) complex refractive index mh relative
to that of the surrounding medium; (4) orientation of
particle to the incident wave; and (5) the observation
direction.

We shall define, in this paper, the particle size pa-
rameter a by

a = 27ra/X, (1)

where a is the.semimajor axis of the ellipse, and X is the
wavelength of the incident wave. We specify the shape
of the spheroid by the ratio a/b of the semimajor axis
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Fig. 1. Scattering geometry. The spherical coordinate system is
adopted to represent the scattered field in the far-field zone. The
origin of the coordinate system and the z axis are the center and the
axis of revolution of the spheroid, respectively. The angle of incidence
¢ is the angle in the plane of incidence (the x-z plane) between the

direction of incidence and the z axis.

a to the semiminor axis b, which has a value greater than
unity. We prefer the ratio a/b rather than the eccen-
tricity as a more direct measure of the elongation of the
spheroid.

Figure 1 shows the geometry of scattering of a linearly
polarized plane electromagnetic wave incident at an
angle to the z axis. The origin of the coordinate sys-
tem should be taken at the center of the spheroid with
the z axis as the axis of rotation, i.e., as the major axis
for a prolate spheroid, and the minor axis for an oblate
one. The spherical coordinate system (0,O) is adopted
to represent the direction of a far-field observation
point, where 0 is the zenith angle measured from the
positive z axis, and 0 is the azimuth angle. The direc-
tion of incidence is assumed to be in the ' = 0 plane (x-z
plane) and is thus identified by (,O).

For oblique incidence ( #: 0) the incident wave can
be resolved into two polarization components, the TE
and TM modes, for which the electric and magnetic
vectors, respectively, vibrate perpendicularly to the
plane of incidence. For # 0, therefore, we have to
consider the two polarization cases separately. For
incidence parallel to the rotation axis ( = 0), however,
the two cases give identical results due to the symmetry
with respect to the incident wave.

111. Numerical Calculations

A. Spheroidal Wave Functions

In our theory, solutions are expressed in terms of the
spheroidal wave functions.'2 The spheroidal wave
functions are important functions in many fields of
physics, especially in the fields of acoustics and elec-
tromagnetic theory. At present, however, their use is
severely limited due to the absence of extensive nu-
merical tables and due to computational instabilities
for large values of the parameters. The spheroidal wave
functions are functions not only of a coordinate argu-
ment but also of a physical parameter c = 27r1/X. Here,
I is the semifocal distance of the ellipse. Numerical
values13-17 published until now have been only for small
spheroids with c 10.

Difficulties arise particularly in calculation of the

radial functions of the second kind for large c and large
a/b. The series representation of the functions in terms
of spherical Neumann functions [Flammer12 (4-1-19)]
converges slowly. For the prolate radial functions of
the second kind, some improvement of convergence of
the series has been made by Sinha and MacPhie18 using
an integral approximation for c < 9.

Another expansion of the radial functions of the
second kind of degree n and order m, in terms of the
associated Legendre functions [Flammer (4.2-6)-(4-2-7)]
loses its accuracy for small values of the difference (n
- m) as c becomes large. In addition, for the prolate
radial functions, the factor

(2m + 0
r=O,l r! r

becomes very small, approaching zero for large c as (n
- m) - 0 and/or m - 0 due to cancellation of terms;
the factor is involved in the series representation of the
radial functions.

We find that expansion of oblate radial functions of
the third kind R(3)(-ic;iQ) in terms of the associated
Legendre functions of the second kind [Flammer (4-5-4)]
gives good results for the radial functions of the second
kind R(2) (-ic;it), especially for small (n - m) and even
for large c through the relation

(21
Rn) (-ic;iQ) = [R( (-ic;i) R(1 (-ic;,i)], (2)

where R(1) (-ic;it) is the oblate radial function of the
first kind and can be calculated easily by series expan-
sion in terms of the spherical Bessel functions [Flammer
(4-1-15)]. This method has been used by Hanish et
al. 15"16 in their tabulation of the oblate radial functions
for small c < 8.

By adopting different computational methods and
choosing the best methods, we have extended calcula-
tions of the spheroidal radial functions to large sizes, up
to c - 35. The eigenvalues were evaluated by means of
Bouwkamp's' 9 correction scheme using a starting value
estimated with the matrix method of Hodge.20

B. Convergence of Solutions

Solutions for scattering by spheroids are expressed
as infinite double-summation series over m and n for
oblique incidence and as infinite summation series over
only n with m = 1 for parallel incidence. Practically,
the infinite series are truncated to finite series including
only the first M terms for the summation over m and N
terms for the summation over n. M and N are deter-
mined by repeating calculations for successively larger
values of M and N, until the final results converge to a
specified accuracy. We have imposed a convergence
condition of more than four-digit accuracy.

Maximum values of M and N depend, of course, on
the particle parameters and orientations. Dependence
of N on the size ax and on the shape a/b has been dis-
cussed in some detail in Ref. 11. A small spheroid with
small a/b and small mh takes a small value of N, while a
large spheroid with large a/b and large r requires a
much larger N.

An example of convergence behavior of the summa-
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tion series over m (0 dependence) is shown in Figs. 2(a)
and 2(b). The mth term of the series for the extinction
cross section [Ref. 11, Eqs. (110) and (111)]

N
Clj)t = -Re E [almn mn(¢) + flmnXmn(¢)] (3)

2 n=m 2 2

is plotted against order m. Figure 2(a) is for a large
slender prolate spheroid with a = 20, a/b = 5, and mh =
1.50 for the two polarization modes of TE and TM at the
three incidence angles ¢ = 5°, 45°, and 900. This figure
shows that convergence of the m series is slower for
larger incidence angles and that, for the small incidence
angle of r = 50, the term with m = 1 dominates. This
means that a larger incidence angle requires a larger M
for the Fourier series expansion in 0 of the azimuth-
dependent scattered field. These results are due to the
fact that, at a fixed zenith angle 0 variation of the scat-
tering angle 0 as a function of a change of the azimuth
angle 0 becomes larger with a larger r through the
relation

cosO = cost- cosO + sink- sinO - cost, (4)

and thus the anisotropy of the scattered field increases.
At v = 900, a change of 0 in the 0 = 900 plane (the x-y
plane) corresponds exactly to a change of the scattering
angle. At v = 00 (parallel incidence), only a single term
with m = 1 appears; that is, the p dependence of the
scattered field is sing or cosk. Figure 2(b) is for oblate
spheroids with rm = 1.33, a/b = 1.5, two different sizes
a = 5 and 20, and incidence of the TE mode polarization
wave. Naturally, convergence is much more rapid for
the small oblate spheroid (a = 5) than for the large one
(a = 20). Compared with Fig. 2(a), convergence is
much slower for the slightly nonspherical oblate
spheroid of a/b = 1.5 than for the slender prolate
spheroid of a/b = 5 with the same size parameter a =
20.

In general, for a given size the spheroids with smaller

Fig. 2. (a) Value of the mth term of the infinite
summation series, Eq. (3), for the extinction cross
sections with oblique incidence of the TE (solid
lines) and TM (broken lines) mode polarization
waves for the prolate spheroid with mh = 1.50, a/b =

5, and a = 20. (b) Value of the mth term of the in-
finite summation series, Eq. (3), for oblate spheroids
with mh = 1.33, a/b = 1.5, and a = 5 (broken lines)
and a = 20 (solid lines) for oblique incidence of the

TE mode polarization wave.

18

a/b require a larger value of m, especially for prolate
spheroids. This is related to the increased anisotropy
of the scattered field with respect to , which occurs
with the increase of the volume and geometrical cross-
sectional area of the spheroids for smaller a/b but fixed
a. In addition, the oblate spheroids require somewhat
larger values of M and N than are required for the
prolate spheroids with the same a and a/b. This is a
result of the fact that, for the same a and a/b, the oblate
spheroids have larger volume and geometrical cross-
sectional area than prolate spheroids.

For large spheroids (e.g., a > 17 for prolate spheroids
with a/b = 2 and r = 1.50), a numerical instability oc-
curs in the calculation of the m = 0 term at oblique in-
cidence 00 < P < 90°. When erroneous results were
generated for the m = 0 term, we found that the coef-
ficient matrix of the system of linear equations, which
determine the unknown scattering coefficients 10,2p (p
= 0,1,2... .), was ill-conditioned with respect to matrix
calculations, while the system of linear equations for the
odd-ordered coefficients /3,2p+1(P = 0,1,2 ... ) was still
very stable. [It has been shown that the even-ordered
coefficients and the odd-ordered ones can be decoupled
and thus determined separately and that, for m = 0,
other coefficients aon (n = 0,1,2 ... ) are always zero be-
cause fon() = 0.1" Ill-conditioning means that solu-
tions of the system of linear equations are sensitive to
small changes of the coefficients in the equations. This
ill-conditioning starts at a smaller size a for a spheroid
with smaller a/b. A cause of the ill-conditioning may
be insufficient accuracy in the numerical computations,
although all calculations were carried out with double
precision arithmetic (fifteen significant figures). A
similar instability has been reported by Barber2 in his
application of the extended boundary condition method
to scattering by absorbing spheroids.

These instabilities in the numerical computations
prevented the extension of the computations to larger
spheroids than those considered in this paper.
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IV. Scattering Efficiency Factors

A. Parallel Incidence ( = 0)
The efficiency factor for scattering Qsca is defined

here by the ratio of the scattering cross section Csca to
the area of the geometrical shadow of the spheroid G (v)
at the incidence angle t. For nonabsorbing particles
with real refractive indexes, the scattering efficiency is
equal to the extinction efficiency. At the parallel in-
cidence v = 0, the scattering cross sections for the TE
and TM mode linear polarizations of the incident wave
are identical and are given by Eq. (119) in Ref. 11. The
geometrical shadow areas G (v) are given by

G( ) = rb(a2 sin2¢ + b2 cos 2 )1/2,

for the prolate spheroids and by

G(v) = ra(b2 sin2D + a2 cos2 v)1/2

8

6

4
C-)

2

(5)

for the oblate spheroids. They become 7rb2 and 7ra2,
respectively, at t = 00.

In Fig. 3, the scattering efficiency factors Qsca of the
prolate spheroids with mh = 1.50 are plotted as a function
of the size parameter a for various values of the shape
parameter from a/b = 1.5 to 5. Computation was per-
formed with resolution in size parameter of 0.5 for a/b
_ 2 and 0.25 for a/b _ 1.5. For small prolate spheroids,
a < 4.0, the scattering efficiency factors are greater for
the spheroids that are closer to being spheres, i.e., for
the smaller a/b. Qsca(a) for a/b = 1.5 is similar to that
for spheres with oscillations which damp out for large
size parameters as Qsca approaches the geometrical
optics limit of 2. A striking feature is that, with increase
of a/b, the first resonance maximum occurs at large size
parameter and the peak value increases.

The major maxima and minima in Fig. 3 are due to
interference of light diffracted with light transmitted
by the particle. The phase shift for a light ray passing
through the particle along the axis in the direction of
incidence is p = 2a(th - 1), which equals a or 2ira/X for
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119=-i.50 '
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~~ m = 1 5 0 t \ ¢ 1) ~2 ) '/b 2.0

15 1 10 1 223

41 "b '4.0
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Fig. 3. Scattering efficiency factors Qsca at ' 00 as a function of the
size parameter 2ra/X for the prolate spheroids with h = 1.50 for

several values of the shape parameter a/b.

6

2nrr/x
12

Fig. 4. Scattering cross sections of prolate spheroids normalized by
the area rr. of a sphere of the same volume as a function of the size
parameter of the sphere 2rru/X for prolate spheroids with mf = 1.50
and a/b = 1.5 2,3, and 5. The curve for spheres is shown by the dotted

line.

the case mh = 1.5. Thus successive maxima, caused by
constructive interference, occur at intervals of -27r.
The case a/b = 3 is a notable exception, however, the
average separation of the maxima would also be -27r if
there were one additional maximum. The results for
a/b = 3.5 shown by the dashed curve, in fact, suggest
that the expected second and third maxima have
somehow combined into a single maximum for a/b
3.

Application of the anomalous diffraction approxi-
mation of van de Hulst2' to scattering by prolate
spheroids at the parallel incidence will give extinction
efficiency curves identical to those of spheres, without
regard to a/b but with the phase lag parameter p = 2a(rh
- 1). However, in fact, the position and peak value of
the first maximum of the scattering efficiency curves
in Fig.3 are strongly dependent on a/b. Furthermore,
the mean periods of the major oscillations of the scat-
tering efficiency curves are a little larger for the prolate
spheroids than for spheres. These discrepancies from
the expectation of the approximation of anomalous
diffraction can be attributed to effects of edge phe-
nomena or grazing reflection.2' The edge phenomena
depend on the curvature of the profile of the scattering
body at the edge; the profile is perpendicular to the
wavefront of the incident wave. The radius of curva-
ture is R = a2/b for the prolate spheroid at parallel in-
cidence. This means a larger radius of curvature and,
therefore, a larger contribution of edge phenomena for
prolate spheroids with larger a/b but the same a.

The scattering cross sections of the prolate spheroids
are replotted in Fig. 4 as a function of the size parameter
2irr,/X for spheres of the same volume; here r is the
radius of the sphere, i.e., r3 = ab2. The scattering cross
sections are normalized by the cross-sectional area 7rr2
of the sphere. In the figure, as a reference, the scat-
tering efficiency curve of spheres is also shown. The
scattering efficiency factors of spheres were computed
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Fig. 5. Scattering efficiency factors Qsca at O = 0° as a function of
the size parameter 27ra/X for oblate spheroids with mh = 1.33 and a/b

= 1.1,1.5,2,3,and5.
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Fig. 6. Scattering cross sections of oblate spheroids normalized by
the area 7rr2 of a sphere of the same volume as a function of the size
parameter of the sphere 27rr,/X for oblate spheroids with m = 1.33
and a/b = 1.5, 2, 3, and 5. The curve for spheres is shown by the

dotted line.
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Fig. 7. Scattering efficiency factors Qrwa as a function of the size
parameter 27ra/X for prolate spheroids with iih = 1.50 and a/b = 5 for
incidence of the TE (solid lines) and TM (broken lines) mode polar-

ization waves at incidence angles ~ = 0', 450, and 90'.

from the Mie theory with a size resolution of 0.2. The
figure shows a change of scattering efficiency curves
with increase of a/b: the curve is as a whole shifted to
smaller values of 27rr0/X, and the first maxima become
sharper and higher. An evident feature is the damping
of the ripplelike fluctuations superimposed on the major
oscillations of the scattering efficiency curves. For
slender spheroids (a/b > 2), the ripples are completely
washed out, and the profiles of the scattering efficiency
curves are greatly different from that for spheres. It is
interesting that the first maxima of the scattering effi-
ciency curves of slender prolate spheroids at =0
occur at similar volumes.

Figure 5 illustrates scattering efficiency curves of
oblate spheroids with rh = 1.33 at v = 00 as a function
of the size parameter a for various values of a/b. With
increase of a/b, the first resonance maximum becomes
broader and lower, and its position is shifted to larger
sizes. However, the decrease of the peak heights is less
striking than the increase for prolate spheroids shown
in Fig. 3. Regarding the position of the first maximum,
if the scattering efficiency factors are plotted against the
phase shift parameter p = 47rb/X * (mh - 1) instead of a,
the first maximum occurs near p = 4.1, which is in good
agreement with the position of the first maximum of the
extinction efficiency curve for spheres with mh = 1.33.
This suggests a less important contribution of edge
phenomena to the scattering by oblate spheroids at v =
00 due to the smaller radius of curvature of the profile
at the edge R = b2/a than for prolate spheroids. An-
other striking feature of the scattering efficiency curves
of the oblate spheroids is that the ripples superimposed
on the major oscillations still remain even for thin oblate
spheroids of a/b = 5, although the amplitude of ripples
is much reduced. With the increase of a/b, the period
of the ripples is increased from 0.8 in a for a/b = 1.1 to
2.0 for a/b = 3.

In Fig. 6, the scattering cross sections of the oblate
spheroids are replotted against the size parameter
27rr0/X for spheres of the same volume, here r3 = a 2b.
The curves of the scattering cross sections normalized
by 7rr2 are greatly different from those for spheres,
showing increasing first major maxima at larger sizes
with increase of a/b. For small sizes 27rr,/X < 6, the
spheres scatter more radiation than the oblate spheroids
of equal volume, but, for larger sizes, the oblate spher-
oids scatter more radiation than spheres of the same
volume because of their greater geometrical cross sec-
tion 7ra2.

B. Oblique Incidence (t # 0)

Figure 7 shows the scattering efficiency factors of
prolate spheroids with mh = 1.50 and a/b = 5 as a func-
tion of the size parameter a for three incidence angles

= 0°, 45", and 900. The computed values are con-
nected by straight line segments because of the coarse
computational resolution of 1.0 in a for oblique inci-
dences. For increasing obliquity the first major maxi-
ma are drastically shifted in position and in profile from
the case of parallel incidence D = 0°. In this size range,
the scattering efficiency factors for the TM mode po-
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Fig. 8. Scattering efficiency factors Qsca as a function of the size
parameter 2ra/X for oblate spheroids with mh = 1.33 and a/b = 3 for
incidence of the TE (solid lines) and TM (broken lines) mode polar-

ization waves at incidence angles r = 0°, 450, and 90°.

larization are greater than those for the TE mode po-
larization, although the difference between the two
polarization cases decreases with increase of a, since in
the geometric optics limit they would coincide.

The change in profile of the scattering efficiency
curves of prolate spheroids as the incidence angle
changes is fairly similar, except for the change in mag-
nitude to that of infinite cylinders22 at oblique inci-
dence. For instance, a broad and rippled first reso-
nance maximum at normal incidence to the cylinder
shifts to sharp and smooth one at grazing incidence,
where our = 900 incidence corresponds to normal in-
cidence to the cylinder and our v 00 corresponds to
the grazing incidence.

The corresponding figure for oblate spheroids with
= 1.33 and a/b = 3 is given in Fig. 8. The behavior

of these curves with change of v is opposite to that of
prolate spheroids, as would be expected from the
qualitative similarity of the prolate spheroid shape at

= 90° to the oblate spheroid shape at v = 0 and vice
versa. With the increase of , the scattering efficiency
curves are shifted as a whole to smaller sizes, with the
major oscillations having larger amplitudes and shorter
periods-the first maxima become steeper and
smoother with higher peaks occurring at smaller sizes.
For sizes larger than the size at the first major maxima,
the curves for the TE and TM mode polarizations cross
one another several times systematically, especially at

= 900. Similar crossing phenomena of the scattering
efficiency curves for the different polarizations have
been reported for the scattering by obliquely oriented
infinite circular cylinders22 and for the microwave
scattering by prolate spheroidal particles.23

In summary, for spheroids with a given shape pa-
rameter, the scattering efficiency curves have steeper
and higher maxima with shorter periods of the major
oscillations occurring for the direction of incidence for
which the geometrical shadow area G () of the spheroid
is smaller or the pathlength through the center of the
spheroid is longer, i.e., H - 0 for the prolate spheroid
and v - 900 for the oblate spheroid; they have broader
and lower rippled maxima at the incidence for which

G (I) becomes larger or the pathlength becomes shorter,
i.e., v 90° for the prolate spheroid and ' 0° for the
oblate spheroid.

The broad maxima of the scattering efficiency curves
are due to the superposition of many resonance peaks,
each associated with a partial wave,24 so the broad
maxima tend to have a ripple structure. The ripple
structure of the scattering efficiency curves of spheres
has been extensively studied in relation to the glory
phenomena or the strong enhancement in the back-
scattering by spheres.2124 29 The ripples and the rapid
oscillations in the backscattering are caused by the ef-
fects of surface waves excited by the incident rays tan-
gential to a sphere. The ripples are due to interference
between the diffracted waves and surface waves.
Several models of the surface wave effects on the rapidly
varying quasi-periodic fluctuations in the backscat-
tering by spheres have been proposed. 2 1 25 27 We have
found similar ripple structures in the scattering effi-
ciency curves of the spheroids. But the appearance of
the phenomena is dependent not only on size and shape
but also on the orientation of the spheroids.

V. Forwardscattering and Backscattering

Because of the special interest in applications to
particle measurements by lidar and radar, the back-
scattering properties of spheroidal particles will be
discussed briefly. The forwardscattering is also ex-
amined in relation to the extinction or scattering effi-
ciency factors of the spheroids.

l06 l,,
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Fig. 9. Intensity functions of forwardscattering i(00 ) and back-
scattering i(1500 ) at parallel incidence as a function of the size pa-
rameter 2ra/X for the slightly nonspherical prolate spheroids with
mi = 1.50 and a/b = 1.1 and 1.5. The intensity functions for spheres

are shown by dotted lines.
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The intensity functions at oblique incidence are given
by Eqs. (102)-(105) in Ref. 11, setting (,00) and (1800
- , 180°) in the angular coordinates (0,') for the for-
wardscattering and backscattering, respectively. From
the expression for the intensity functions, it follows that
there is no cross polarization, i.e., i 2 = i2l = 0 in the
plane of incidence, i.e., the 0 = 0 and 1800 plane.3 0

Thus for oblique incidence of unpolarized light, the
intensity functions of the forwardscattering and back-
scattering are given, respectively, by

i(0,00 ) = /2 [i11G(,00) + i22(G,00)1,

i(1800 - A, 180°) = /2 [iii(180' - , 180°)

+ i2 2(180' - , 180°)].

(7)

(8)

At parallel incidence ( = 0°), the intensity functions
[Eqs. (107) and (108) in Ref. 11] become

il(O) = i2 (00 )

= I [1, (r + )(r + 2) an] + ) 2

i l (180 0) = i2 (180')

(9)

= i [ri , (r + 1)(r + 2) dir] (-l)n(aln - J) (10)
n=1 =0,1 2 

for forwardscattering and backscattering, respective-
ly.

Figure 9 shows the forwardscattering and backscat-
tering intensity functions of prolate spheroids with a/b
= 1.1 and 1.5 as a function of the size parameter a at
parallel incidence. The intensity functions of spheres
are also plotted; the plotting resolution in this figure is
0.5 in the size parameter. The figure demonstrates the
gradual change of scattering by slightly nonspherical
prolate spheroids from scattering by spheres. At a
given size, the forwardscattering intensity is smaller for
the prolate spheroids with larger a/b because of their
smaller shadow area G(00); for large particles, the for-
wardscattering is mostly contributed by the diffracted
light. The curves of the forwardscattering intensity
oscillate with a larger amplitude for larger a/b. The
oscillations correspond to the major oscillations of the
scattering efficiency curves, and they are due to inter-
ference of the diffracted and transmitted light. The
positions of maxima of the forwardscattering intensity
curves are slightly shifted to larger sizes than those of
the scattering efficiency curves, although minima of
both curves are in phase.

The backscattering intensity of spheres fluctuates
sharply due to the effects of surface waves. The effects
of surface waves are more prominent for the backscat-
tering than for the forwardscattering, because of the
greater contribution of diffracted light to the for-
wardscattering. 31 For the slightly nonspherical prolate
spheroids, the fluctuation is damped greatly, and the
curves become smoother. For large sizes, a > 13, the
backscattering by the prolate spheroids is larger than
that by spheres in spite of the smaller shadow area of the
prolate spheroids. For slender prolate spheroids,
naturally, the backscattering becomes much less than
that of spheres, and it begins to oscillate periodically as
shown in Fig. 10.

Fig. 10.. Intensity functions of forwardscattering i(D,00 ) and back-
scattering i(1800 - A, 180°) for unpolarized incident light at r = 00,
450, and 900 as a function of the size parameter 2ira/X for prolate

spheroids with m = 1.50 and a/b = 5.
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Fig. 11. Intensity functions of forwardscattering i(D,O) and back-
scattering i(1800 - A, 180°) for unpolarized incident light at r = 00,
450, and 900 as a function of the size parameter 2ra/X for oblate

spheroids with mh = 1.33 and a/b = 3.
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Figure 10 illustrates the forwardscattering and
backscattering intensity functions of the slender prolate
spheroids with mh = 1.50 and a/b = 5 for incidence of
unpolarized light at r = 0°, 450, and 900. Oscillations
corresponding to those of the scattering efficiency
curves in Fig. 7 are clearly seen on the forwardscattering
curves, especially at v = 00. For large sizes, a > 11, the
forwardscattering intensity is larger for larger incidence
angles because of the greater shadow areas, while for
small sizes, a < 5, it is nearly independent of the inci-
dence angle. The backscattering intensity functions
at v = 00 and 900 oscillate periodically. This smooth
periodic oscillation may be due to interference of the
axial rays reflected from front and rear surfaces and of
the glory rays emerging in the backward direction after
internal reflections.24 At A = 450, the oscillation of the
backscattering curve is rather irregular, and its mean
values are almost the same as those of v = 0° in spite of
the greater shadow area-G(45 0 ) > G(00 )-because of
the lack of backward reflection of axial rays from the
front surfaces due to the asymmetric orientation to the
incident direction.

Similar figures for oblate spheroids with mf = 1.33 and
a/b = 3 are given in Fig. 11. This figure should be re-
ferred to Fig. 8; the general features of the forwards-
cattering curves are similar to those of the scattering
efficiency curves. In contrast with the prolate spher-
oids for large sizes, a > 8, the forwardscattering inten-
sity becomes smaller for a larger incidence angle because
of the smaller shadow area. But for small sizes, a < 8,
the forwardscattering intensity at v = 900 is a little
larger than at v = 00. The backscattering intensity
curves show irregular fluctuations; the amplitude of
fluctuations decreases with increase of . This feature
corresponds to the damping of the ripplelike fluctua-
tions on the scattering efficiency curves in Fig. 8.

For incidence of polarized light, the difference of the
forwardscattering intensities for the TE and TM mode
polarizations has the same sign as that of the scattering
efficiency factors for the different polarizations. For

0 +_180' ° 

Prolate p45 =90'

0' o1b= 5 90' '- / \ 7
45' I 0' I

lo,~~~~~~~~~~~~~~~I I

10Q6 

backscattering, however, opposite signs occur for some
sizes.

VI. Angular Distribution of Scattered Intensity

Figure 12 shows the angular distribution of the in-
tensity functions for incidence of unpolarized light i(0,,O)
of the prolate spheroids with mh = 1.50, a/b = 5, and a
= 10 at incidence angles = 00, 450, and 900. The fig-
ure displays the distribution of the intensity functions
on the plane of incidence, i.e., the m = 00 and 1800 plane
as a function of the zenith angle 0. As mentioned be-
fore, there is no cross polarization or depolarization on
this plane. The angular patterns at v = 00 and 900 are,
of course, symmetrical with respect to the incident di-
rection (,00). On the other hand, the profile at -= 450
is not symmetrical, because of the asymmetric orien-
tation of the spheroid with respect to the incident di-
rection. The forwardscattering peak at v = 00 is larger
than it is at v = 450 and 900 in spite of the smallest
shadow area at r = 00. This peak corresponds to the
strong first resonance maximum of the scattering effi-
ciency curve at v = 00 around this size (Figs. 7 and
10).

Corresponding figures for the intensity functions
i (0,O) of the oblate spheroid with mh = 1.33, a/b = 3, and
a = 10 are given in Fig. 13. The variation of the inten-
sity function profiles with incidence angle is again op-
posite to that for prolate spheroids. With increase of
, the forwardscattering peak becomes lower and

broader, and the number of maxima and minima of the
oscillation increases. At v = 450, the distribution of the
intensity function is asymmetrical with respect to the
incidence direction, and it varies more slowly, having
a large second maximum around (1100, 00) on the right
half-plane divided by the incidence direction.

Figure 14 illustrates the angular distribution of the
intensity functions i (0,,O) for the large slender prolate
spheroid with rm = 1.50, a/b = 5, and a = 20 at v = 45°
as a function of 0 on three scattering planes through the
z axis: one parallel to the incidence plane ( = 00 and

Fig. 12. Angular distribution of the intensity
functions i(O,0) for unpolarized incident light as a

- function of the zenith angle 0 on the incidence plane
(0 = O° - 1800) for the prolate spheroid with mh =
1.50, a/b = 5, and a = 10 at incidence angles 0 = 00,

450, and 90°.

0 (degrees)
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Fig. 13. Angular distribution of the intensity
functions i(0,0) for unpolarized incident light as a
function of the zenith angle 0 on the incidence plane
( = 0 - 1800) for the oblate spheroid with mh =
1.33, a/b = 3, and a = 10 at incidence angles r = 0,

450, and 900.

co
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Fig. 14. Angular distribution of the intensity
functions i(0,k) for unpolarized incidence light for
the prolate spheroid with mh = 1.50, a/b = 5, and a
= 20 at ¢ = 45°. The. figure shows, as a function of
the zenith angle 0, the distribution patterns in three
scattering planes through the z axis: one parallel
to the incidence plane ( = 00 and 180°), one in-
clining from it by an angle 45 ( = 450 and 2250),

and one normal to it ( = 90° and 2700).

2 a/X

Fig. 15. Efficiency factors for extinction Qext, scattering Qca and absorption Qabs at r = 00 as a function of the size parameter 2ra/X for ab-
sorbing prolate spheroids with mh = 1.50 + 0.li and a/b = 2. The extinction efficiency factors for nonabsorbing prolate spheroids with i =

1.50 + O.Oi are also shown.
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1800), one inclining from it by an angle 45 ( = 450 and
2250), and one normal to it ( = 900 and 270°). The
intensity functions have maxima in the narrow angle
regions around 0 = 450 in each plane, and they decrease
rapidly outside the maxima, where, in addition, the
intensities in the different planes are of similar magni-
tude. Note particularly that radiation is hardly scat-
tered in the negative z-axis direction ( = 1800). At v
= 900 (without a figure) the scattered intensity is con-
fined to a narrow angle region around 0 = 90° in every
0 plane, and its minimum is on the z axis. Thus most
radiation scattered by a large slender prolate spheroid
at oblique incidence is confined to a narrow angle region
surrounding the surface of the cone with an apical angle
of 2 with its axis coincident with the z axis. It is
noteworthy that scattering by long prolate spheroids at
oblique incidence resembles scattering by infinite cir-
cular cylinders. The scattered radiation from an infi-
nitely long cylinder is confined exactly to the surface of
the cone with apical angle 2 * 24,32

VII. Scattering Properties of Absorbing Spheroids

Figure 15 shows the efficiency factors for extinction,
scattering, and absorption of absorbing prolate spher-
oids with mh = 1.50 + 0.1i and a/b = 2 at parallel inci-
dence v = 0 as a function of the size parameter a. In
the figure, the extinction (or scattering) efficiency fac-
tors of nonabsorbing prolate spheroids with real re-
fractive index r = 1.50 + 0.Oi are also shown. The ef-
fects of absorption on the efficiency factors are similar
to the effects that are observed for absorbing
spheres 2l, 24, 31 : for example, damping of the oscillations
of the efficiency curves, shifts of the maxima of the ex-
tinction curves to smaller a, and higher extinction ef-
ficiency for absorbing spheroids at small sizes a $ 3.5.
The efficiency factors for scattering Qsca and absorption
Qabs approach the geometrical optics limit of unity as
size a increases; thus the extinction efficiency factor Qext

converges to the limiting value 2 with diminishing os-
cillations around that value.

Figure 16 is a comparison of the angular distribution
of the intensity functions for scattering by a lossless
prolate spheroid ( = 1.50 + 0.0i) with the curve for the
same prolate spheroid with absorption ( = 1.50 +
0.1i). The intensity functions i(O) at parallel incidence
are plotted against 0 for prolate spheroids with a/b =
2 and a = 9. The component il(O) perpendicular to the
scattering plane is more highly structured than the
parallel component. The absorption causes a reduction
of scattered intensity over almost the entire range of
angles, except the forwardscattering peak and a
damping of the oscillations. The reduction is much
more noticeable in the backscattering, as also shown in
Fig. 17.

Figure 17 illustrates the forwardscattering and
backscattering intensity functions i(00 ) and i(1800 ) for
parallel incidence as a function of the size parameter a
for absorbing and nonabsorbing prolate spheroids with
a/b = 2. The intensity functions i(00 ) and i(1800 ) of
the nonabsorbing spheroids ( = 1.50 + 0.0i) oscillate
regularly with fairly large amplitudes due to the inter-

10*l I I I I I I
0 60 120 180

8(degrees)

Fig.16. Angular distribution of the intensity function il(0) at parallel
incidence of the TE mode polarization wave as a function of the zenith
angle 0 for absorbing ( = 1.50 + O.li) and nonabsorbing (m = 1.50

+ O.Oi) prolate spheroids with a/b = 2 and a = 9.
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Fig. 17. Intensity functions for forwardscattering i(00 ) and back-
scattering i (180') at parallel incidence as a function of the size pa-
rameter 27ra/X for absorbing (th = 1.50 + 0.li) and nonabsorbing (t

- 1.50 + .0i) prolate spheroids with a/b = 2.
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ference effects mentioned before. For the absorbing
prolates with mh = 1.50 + 0.1i, the oscillation of the in-
tensity functions i(00) is almost damped out, and the
intensity functions take approximately the mean value
of the oscillating functions of the nonabsorbing prolate
spheroids. The backscattering intensity functions of
the absorbing prolate spheroids are reduced by more
than 1 order of magnitude, and they fluctuate rather
irregularly except for the first maximum. This is be-
cause of the decrease of transmitted light through the
spheroids due to absorption and, in turn, the decrease
of interference effects.

One particularly interesting feature of the scattering
behavior shown in Fig. 16 is the larger forwardscattering
intensity of the absorbing prolate spheroid than that of
the nonabsorbing one, by about 1 order of magnitude,
together with a relatively high peak at 0 = 350 on the
curve of the nonabsorbing prolate spheroid. Such a
characteristic peak is seldom observed in scattering by
spheres. Barber and Yehl first found this peak in the
scattering by the prolate spheroid with h = 2.236, a/b
= 3, and a = 7.114, and they attributed its origin to
specular reflection off the leading edge of the spheroid.
With the aid of Fig. 17, however, we can easily under-
stand that the cause of the low forwardscattering and
the high peak at 0 = 350 on the curve of the nonab-
sorbing prolate spheroid is due to unfavorable inter-
ference of diffracted and transmitted light at the for-
wardscattering direction rather than because of specular
reflection. In the calculation of scattering by the
slender prolate spheroids with = 1.50 at parallel in-
cidence, we found many such peaks, for example, at 11.0
< a • 12.0 for a/b = 3, 13.0 < a < 14.0, 16.5 < a • 17.0,
and 24.0 < a < 25.0 for a/b = 4, and 14.5 < a < 15.0 and
19.0 < a • 20.0 for a/b = 5. Near these size parameters,
the scattering efficiency factors and the forwardscat-
tering intensity functions have minima (see Figs. 3 and
10). In the case of spheres, the amplitude of oscillations
in the forwardscattering intensity due to interference
effects is too small to reduce the forwardscattering in-
tensity lower than the next maximum (Fig. 9).

Vil. Concluding Remarks

The light scattering characteristics of spheroidal
particles have been evaluated by the scattering theory
we developed for a homogeneous isotropic spheroid.
The method has been shown to be quite suitable for
computing the scattering quantities of spheroidal par-
ticles of fairly large sizes, up to a - 30. Application of
the method to still larger spheroids is at present limited
by computational difficulties of the spheroidal wave
functions and the infinite series for the solutions dis-
cussed in Sec. III.

The dependence of scattering properties on the par-
ticle size, shape, refractive index, and orientation has
been investigated and physically explained. Relative
contributions of the interference effects, surface wave
effects, and edge phenomena have been discussed
qualitatively. Further study remains to be done with
fuller calculations planned for the future.

The scattering properties of the spheroidal particles
deviate gradually from those of spheres with an increase

of the shape parameter a/b, and, for a/b > 2, they are
already greatly different from those of spheres. The
scattering by prolate and oblate spheroids at parallel
incidence ( = 0°) yields the extremes of the scattering
characteristics. The prolate spheroids at A = 00 have
steep and high resonance maxima in the scattering ef-
ficiency factors and broad and low forwardscattering
peaks in the intensity functions except at the sizes of the
first maximum of the scattering efficiency factors; on
the other hand, the oblate spheroids at = 0 have
broad and low resonance maxima and sharp and high
forwardscattering peaks. With the increase of A, the
scattering properties of the prolate spheroids, except
for the magnitude, approach those of the oblate ones at

= 0° and vice versa.
This type of study of the scattering properties of

spheroidal particles is important in its own right and
also useful for understanding the scattering by other
nonspherical particles. A survey of the angular distri-
bution profiles of the intensity functions and the degree
of polarization will provide much valuable information
on the particle parameters and orientations of non-
spherical particles and will be helpful in the determi-
nation of those parameters by means of light scattering
measurements.

I thank J. E. Hansen for useful discussions and for his
hospitality at the Institute for Space Studies. I also
thank V. Gurdus for his assistance in numerical com-
putation of the spheroidal wave functions. I extend my
appreciation to G. Yamamoto and M. Tanaka for their
encouragement. During the course of this research, I
held a NAS-NRC Postdoctoral Research Associateship
supported by NASA, and I was on leave from Geo-
physical Institute, Tohoku University, Japan.
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